Apelin-36 (Human)
RIA Kit Assay Protocol
(Catalog No. RK-057-15)

(Range: 10-1280 pg/ml)
INTRODUCTION

This kit is designed to measure a specific peptide and its related peptides by a competitive radioimmunoassay method. It is intended for in vitro study only. The antibody used for this assay was raised against a synthetic form of the peptide.

CONTENTS:

1. RIA buffer 50 ml (4x concentrate) (large bottle, silver cap)
2. Standard Peptide 12.8 μg (lyophilized powder in an eppendorf tube, purple cap)
3. Rabbit antibody specific for the peptide (lyophilized powder, blue cap)
4. ¹²⁵I-peptide, 1.5 μCi (lyophilized powder in an eppendorf tube, red cap)
5. Goat Anti-Rabbit IgG Serum (GAR) (lyophilized powder, gold cap)
6. Normal Rabbit Serum (NRS) (lyophilized powder, green cap)
7. Positive Control (small bottle, silver cap) (lyophilized powder in an eppendorf tube)
8. General Protocol, 1 booklet

Materials for extraction are not included.

Note: Phoenix Pharmaceuticals, Inc. guarantees that its products conform to the information contained in this publication. The purchaser must determine the suitability of the product for their particular needs and establish optimum sample concentration.

Packaged RIA Kit
STORAGE

This kit contains reagents sufficient for 125 RIA tubes. 125I-peptide expires in approximately 6 weeks. Store at -20°C upon receipt. We strongly recommend that this kit be used as soon as possible upon receiving. All solutions should be used on the same day as rehydration.

GENERAL INFORMATION

The assay is based upon the competition of hot 125I-peptides and cold peptides (standard or unknown) binding to the limited quantity of antibodies specific for the peptides in each reaction mixture. As the concentration of standard or unknown sample in the reaction increases, the amount of 125I-peptide able to bind to the antibody decreases. By measuring the amount of 125I-peptide bound as a function of the concentration of the peptide (in standard reaction mixtures), it is possible to construct a “standard curve” from which the concentration of the peptide in the unknown sample can be determined. The assay requires two overnight incubations, so please plan accordingly.

SAMPLE PREPARATION

Plasma, serum, culture media, tissue homogenate, CSF, urine or any biological fluid can be assay as long as the level of peptide in the sample is high enough for the sensitivity of the kit to detect.

Plasma Extraction: Extraction is strongly recommended but not required. It is up to the discretion of the paper reviewers. See page 10.

Add standards, samples and antibodies

↓

Vortex and incubate for 16-24 hours at 4°C

↓

Add 125I-peptides

↓

Vortex and incubate for another 16-24 hours at 4°C

↓

Add GAR and NRS (except TC tubes)

↓

Vortex and incubate at room temperature for 90 minutes

↓

Add RIA buffer (except TC tubes)

↓

Vortex and centrifuge for 20 minutes at 3,000 rpm / 1,700 x g

↓

Aspirate off the supernatant (except TC tubes)

↓

Count assay tubes

↓

Calculation of results
GENERAL PROCEDURE FOR UTILIZATION OF THE RIA KIT:

1. Dilute the RIA buffer (4X concentrate) (large bottle, silver cap) with 150 ml of distilled water. This buffer will be used to reconstitute all of the other compounds in this kit and should be used for dilution of samples if needed.

2. Reconstitute the standard peptide (purple cap) with 1 ml of RIA buffer. Vortex at least two minutes until ALL the peptide powder is completely dissolved in the eppendorf tube.

Note: Before adding buffer, carefully examine the eppendorf tube containing the standard. During shipping, part or all of the lyophilized standard may have come loose from the bottom of the tube causing it to stick to the cap or walls of the tube. Gently tap or centrifuge the tube to dislodge powder from the cap or walls. Carefully open the tube and add buffer.

3. Reconstitute the antibody (blue cap) with 13 ml of RIA buffer and vortex.

4. Reconstitute the Positive Control (small bottle, silver cap) with 1 ml of RIA buffer and vortex the eppendorph tube.

5. Reconstitute unknown samples with RIA buffer to a concentration that will allow their values to fall within the linear range of the standard curve (we cannot ensure success with other buffers that have not been tested). (Refer to step 7 on page 11).

Note: The remaining reagents are not required at this time and should be stored in their lyophilized state until needed.
6. Prepare dilutions of the standard as shown in Page 4 and Table 1 below. Vortex each tube and switch each tip between dilutions.

Table 1: Standard Dilutions

<table>
<thead>
<tr>
<th>Tube</th>
<th>RIA Buffer</th>
<th>Standard</th>
<th>Std. Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>1.0ml</td>
<td>Powder</td>
<td>12.8 μg/ml</td>
</tr>
<tr>
<td>0</td>
<td>990 μl</td>
<td>10 μl of Stock</td>
<td>128,000 pg/ml</td>
</tr>
<tr>
<td>A</td>
<td>990 μl</td>
<td>10 μl of 0</td>
<td>1,280 pg/ml</td>
</tr>
<tr>
<td>B</td>
<td>500 μl</td>
<td>500 μl of A</td>
<td>640 pg/ml</td>
</tr>
<tr>
<td>C</td>
<td>500 μl</td>
<td>500 μl of B</td>
<td>320 pg/ml</td>
</tr>
<tr>
<td>D</td>
<td>500 μl</td>
<td>500 μl of C</td>
<td>160 pg/ml</td>
</tr>
<tr>
<td>E</td>
<td>500 μl</td>
<td>500 μl of D</td>
<td>80 pg/ml</td>
</tr>
<tr>
<td>F</td>
<td>500 μl</td>
<td>500 μl of E</td>
<td>40 pg/ml</td>
</tr>
<tr>
<td>G</td>
<td>500 μl</td>
<td>500 μl of F</td>
<td>20 pg/ml</td>
</tr>
<tr>
<td>H</td>
<td>500 μl</td>
<td>500 μl of G</td>
<td>10 pg/ml</td>
</tr>
</tbody>
</table>

7. Set up RIA reactions (see Table 2 on page 6) in up to 125 12 mm x 75 mm polystyrene tubes.

a) Number tubes TC-1, TC-2, NSB-1, NSB-2, TB-1, TB-2 and #7 - #22 for the standards.
b) Number tubes #23, #24 for the positive controls.
c) Number tubes #25 up to #125 for the unknown samples.
d) Pipette 200 μl of RIA buffer into each NSB tube.
e) Pipette 100 μl of RIA buffer into each TB tube.
f) Pipette 100 μl of standards H through A into duplicate tubes #7-#22.

Note: The tubes should be prepared in reverse order of serial dilution so that the concentration increases as the number of the tube increases. For example: Begin by pipetting 100 μl of standard H into tubes #7 & #8, then proceed to standard G into #9 & #10...

g) Pipette 100 μl of positive control into tubes #23 & #24.
h) Pipette 100 μl of unknown sample into duplicate tubes: tube #25 and up.
i) Pipette 100 μl of antibody into all tubes EXCEPT TC AND NSB TUBES.

j) Vortex the contents of each tube.

k) Cover and incubate all tubes at 4°C for 16-24 hours.

Table 2: Contents in Each Tube for Incubation

<table>
<thead>
<tr>
<th>Tube</th>
<th>Contents</th>
<th>RIA Buffer</th>
<th>Std or Samples</th>
<th>Antibody Working Tracer Solution (WTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-1 & 2</td>
<td>Total Counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSB-1 & 2</td>
<td>Non-specific binding</td>
<td>200 μl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-1 & 2</td>
<td>Total binding</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>7, 8</td>
<td>H Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>9, 10</td>
<td>G Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>11, 12</td>
<td>F Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>13, 14</td>
<td>E Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>15, 16</td>
<td>D Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>17, 18</td>
<td>C Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>19, 20</td>
<td>B Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>21, 22</td>
<td>A Standard</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>23, 24</td>
<td>Positive Control</td>
<td>100 μl P.C</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>25, 26</td>
<td>Sample 1</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>27, 28</td>
<td>Sample 2</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
</tr>
<tr>
<td>Etc.</td>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(After 16-24 hours)

8. a) Add 1 ml RIA buffer into the ^125^I-peptide in the eppendorf tube (red cap) and vortex. This is the Stock Tracer Solution (STS). Take 10 μl of STS and check its concentration (cpm/μl) using a γ-counter.

b) Prepare 13 ml RIA buffer in a polystyrene container. Add an adequate amount of STS into this container so that the concentration is 8,000-10,000 cpm/100μl. Confirm the concentration with a γ-counter. This is the Working Tracer Solution (WTS).

c) Add 100 μl of the WTS to each tube.
9. Vortex the contents in each tube.

10. Cover and incubate all tubes for another 16-24 hours at 4°C.

(After 16-24 hours)
11. Reconstitute the Goat Anti-Rabbit IgG serum (GAR) (gold cap) with 13 ml of RIA buffer.

12. Reconstitute the Normal Rabbit Serum (NRS) (green cap) with 13 ml of RIA buffer.

Note: The Total Count Tubes (TC) are not involved in the following reactions.

13. Add 100 μl of GAR to each tube except the TC tubes.

14. Add 100 μl of NRS to each tube except the TC tubes.

15. Vortex the contents of each tube. Incubate all tubes at room temperature for at least 90 minutes.

16. Add 500 μl of RIA buffer to each tube (except the TC tubes) and vortex.

17. Centrifuge all tubes (except the TC tubes) at 3,000 rpm (approx. 1700 x g) for at least 20 minutes at 4°C.

18. Carefully aspirate ALL the supernatant (without touching the pellet) immediately following centrifugation (do not decant as the pellet might be lost or excess liquid could be left). DO NOT ASPIRATE THE TC TUBES.

Note: For best results, the supernatant should be immediately aspirated after centrifugation. If the pellet sits for more than 15-30 minutes, it may become detached and make aspiration difficult. Do not aspirate any solids.

19. Use a γ-counter to count the cpm of the pellet.
CALCULATIONS:

1. Calculate the average NSB and label it as NSB using cpm.

2. Calculate the average TB and label it as TB using cpm.

3. Use the following equation to find B_0: $B_0 = TB - NSB$

4. Use the following calculation to determine the B/B_0 (%) for paired standards and unknown samples:

a) Example for standard H:

 $B/B_0 (%) = \frac{(Avg. \text{ cpm Std. H}) - (NSB)}{B_0} \times 100$

 b) Standards G through A (tubes #9-#22), Positive Controls (tubes #23 & #24) and the unknown samples (tubes #25 up to #125) are handled as shown above for standard H.

5. Examples of Tabulated Data:

Table 3: Tabulated Data After Calculation

<table>
<thead>
<tr>
<th>Tube</th>
<th>Samples</th>
<th>Peptide</th>
<th>Average cpm</th>
<th>B/B_0 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-1,2</td>
<td></td>
<td></td>
<td>9,000</td>
<td></td>
</tr>
<tr>
<td>NSB-1,2</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TB-1,2</td>
<td></td>
<td>0 pg/ml</td>
<td>4,000</td>
<td>100</td>
</tr>
<tr>
<td>7,8</td>
<td>H Standard</td>
<td>10 pg/ml</td>
<td>3,471</td>
<td>93.3</td>
</tr>
<tr>
<td>9,10</td>
<td>G Standard</td>
<td>20 pg/ml</td>
<td>2,287</td>
<td>55.5</td>
</tr>
<tr>
<td>21,22 A Standard</td>
<td>1280 pg/ml</td>
<td>420</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>23,24 Positive Control</td>
<td>?</td>
<td>2,171</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td>25,26 Sample 1</td>
<td>?</td>
<td>976</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>27,28 Sample 2</td>
<td>?</td>
<td>1,383</td>
<td>32.0</td>
<td></td>
</tr>
</tbody>
</table>
Examples of Tabulated Data Continued:

Total Count (Total activity) (cpm/100μl) = 9,000 cpm
\(NSB = 150 \) cpm
\(TB = 4,000 \) cpm
\(B_0 = 4,000 \) cpm - 150 cpm = 3850 cpm

6. On semi log graph paper, plot \(B/B_0 \) (%) (in decimal scale) versus the standard peptide concentrations (in log scale).
 a) Label the concentrations of standard H through A (10-1280 pg/ml) on the X-axis (log scale).
 b) Label \(B/B_0 \) (%) (0 to 100%) on the Y-axis (decimal scale)
 c) Plot \(B/B_0 \) (%) for each standard concentration directly above its X-axis designation.
 d) Draw the “Best-Fit” curve.

7. Determination of the concentration of peptide in unknown samples.
 a) Using \(B/B_0 \) (%) calculated for each unknown sample, read across the graph to the point of intersection with the “Best-Fit” curve.
 b) The corresponding X-axis coordinate is equivalent to the concentration of peptide (pg/ml) in the assayed sample.
 c) To calculate the amount of peptide in the original sample, multiply the concentration of the assayed sample by any dilution factor used to prepare the sample.

8. Conversion of units:
 \(\text{pg/ml} \times 1000 \div \text{Mol. Wt.} = \text{PMole/L} \)
Suggested Method for the Extraction of Peptides from Plasma

Blood Withdrawal:

Collect blood samples into Lavender Vacutainer tubes (Cat. No. VT-6450) which contain EDTA. Each tube can collect 7ml of blood/tube. Gently rock the Lavender Vacutainer tubes several times immediately after collection of blood for anti-coagulation. Transfer the blood from the Lavender Vacutainer tubes to centrifuge tubes containing aprotinin (Cat. No. RK-APRO) (0.6 TIU/ml of blood) and gently rock several times to inhibit the activity of proteinases. Centrifuge the blood at 1600 x g for 15 minutes at 4°C and collect the plasma. Plasma kept at -70°C is stable for up to one month.

Elution Solvents:

1. Buffer A (Cat. No. RK-BA-1)
2. Buffer B (Cat. No. RK-BB-1)

Extraction of Peptides from Plasma:

1. Acidify the plasma with an equal amount of buffer A. For example, if you are using 1ml of plasma, add 1ml of buffer A. Mix and centrifuge at 6,000 to 17,000 x g for 20 minutes at 4°C. Keep the supernatant.

2. Equilibrate the SEP-COLUMN containing 200mg of C18 (Cat. No. RK-SEPCOL-1) by washing with buffer B (1ml, once) followed by buffer A (3ml, 3 times)

Note: From steps 3-5, no pressure should be applied to the column.
3. Load the acidified plasma solution onto the pre-treated C-18 SEP-COLUMN.

4. Slowly wash the column with buffer A (3ml, twice) and discard the wash.

5. Elute the peptide slowly with buffer B (3ml, once) and collect eluant into a polystyrene tube.

6. Evaporate eluant to dryness in a centrifugal concentrator or by a suitable substitute method.

7. Dissolve the residue from step 6 with RIA buffer as follows:
 - For normal subjects, dissolve in 250μl of RIA buffer (Please note that if 1ml of sample was started with, then at this point the sample is concentrated by 4.)
 - Aliquot 100μl into each tube (50μl is left over).
 - If each tube is found to contain 100pg/ml of the peptide, then the total level of peptide in plasma = 100pg/ml ÷ 4 = 25pg/ml (where the concentration factor is 4).
 - If upon assay the peptide value exceeds or does not fall in the linear range of the standard curve, dilute or concentrate the sample accordingly. (Refer to step 5 from page 4).
TIPS FOR EXTRACTION OF PLASMA:

When using SEP-COLUMN for the first time, use the enclosed bulb to apply pressure to the column after addition of 1ml of buffer B to facilitate flow. From steps 3-5, no pressure should be applied.

Ensure that there is a constant flow for all solutions during the extraction procedure. Do not allow air bubbles to enter the C-18 matrix for optimal sample processing and recovery.

Drying Sample After Extraction:

A combination of centrifugal concentrator (i.e Speedvac) and a lyophilizer (freeze-dryer) produces the best results for drying the sample after extraction. First, use a Speedvac to dry sample for approximately 15 minutes to remove the organic layer. Then freeze the remaining sample, and freeze-dry overnight using a lyophilizer. This two-step procedure produces a fluffy powder that is easier to rehydrate than a sample dried only with a centrifugal concentrator. However, if a centrifugal concentrator is not accessible, freeze-drying overnight using a lyophilizer will be sufficient.
REFERENCES:

CAUTION: SOME REAGENTS IN THIS KIT CONTAIN SODIUM AZIDE WHICH MAY REACT WITH LEAD AND COPPER PLUMB-ING TO FORM EXPLOSIVE METAL AZIDES. FLUSH WITH LARGE VOLUMES OF WATER DURING DISPOSAL.
INSTRUCTIONS FOR POSSESSION, HANDLING AND USE OF RADIOACTIVE MATERIAL

This radioactive material shall only be received, acquired, possessed and used by physicians and veterinarians in clinical laboratories or hospitals for in vitro laboratory tests. Its use should not involve internal or external administration of the material and radiation therefrom to human beings or animals. Its receipt, acquisition, possession, use and transfer are subject to the regulations and general license requirements of the U.S. Nuclear Regulatory Commission or of a State with which the Commission has entered into an agreement for the exercise of regulatory authority.

Precautions in Handling Radioactive Material:

The user should store the by-product material, until used, in the original shipping container or in a container providing equivalent radiation protection.

When Handling Radioactive Materials: there should be no drinking, eating or smoking; hands should be covered with gloves, and thoroughly washed after; do not pipette by mouth.

Spills must be quickly and thoroughly cleaned up. Surfaces involved should be washed with an alkali detergent (alconox or the equivalent).

Persons under 18 should not be permitted to handle radioactive material or enter radioactive areas.

Disposal:

Radioactive waste should be disposed of in compliance with Federal, State, and Local Government regulations. Agencies that can be consulted include the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), the Department of Energy (DOE), and the Department of Transportation.

THIS PACKAGE CONFORMS TO THE CONDITIONS AND LIMITATIONS SPECIFIED IN 49 CFR173.421 FOR EXCEPTED RADIOACTIVE MATERIAL LIMITED QUANTITY, N.O.S. UN2910.
FOR RESEARCH ONLY

NOT FOR USE IN DIAGNOSTIC PROCEDURES

USA
PHOENIX PHARMACEUTICALS, INC.
330 Beach Rd.
Burlingame, California 94010
Tel: 650-558-8898, 800-988-1205
Fax: 650-558-1686
Info@phoenixpeptide.com
www.phoenixpeptide.com

EUROPE
PHOENIX EUROPE GMBH
Viktoriastasse 3-5.
D-76133 Karlsruhe, Germany
Tel: +49 (721) 1208 150
Fax: +49 (721) 1208 1515
europe@phoenixpeptide.eu